Math 5 - Trigonometry - fall '07 - Chapter 3 Test
Name \qquad
Show all work for credit. Write all responses on separate paper.

1. Consider the line passing the points $(20,100)$ and $(7,9)$ in the $x-y$ Cartesian coordinate plane.
a. Show that an equation for the line in x and y.
b. Find an equation for the line parallel to this line and passing through $(0,8)$.
c. Find an equation for the line perpendicular to this line and passing through $(0,0)$.
2. Consider the quadratic $f(x)=-x^{2}+2 x+2$
a. Express the quadratic function in standard form.
b. Express the zeros (x-intercepts) of the parabola in simplest radical form.
c. Sketch its graph, showing the coordinates of the vertex and all intercepts.
3. Consider the circle with diameter extending from $(0,0)$ to $(16,30)$.
a. Find the center of the circle.
b. Find the radius of the circle.
c. Write an equation for the circle.
4. Suppose $f(x)=\sqrt{x+1}$ and $g(x)=\frac{1}{x^{2}-4}$. Find the domain of $(g \circ f)(x)$
5. Compute and simplify the average rate of change of $f(x)=\frac{x}{x^{2}+1}$ over the given interval. Simplify your result.
a. $[0,2]$
b. $[1,1+h]$
6. Given the graph of $y=f(x)$ shown at right and the given transformation, tabulate the transformed coordinate values of points at A, B, C, D, E, F and G, and plot the given transformation
a. $\quad y=2 f(x)$
b. $y=1+f(x-2)$
c. $y=10-f(x)$

7. The total surface area of a cylinder is π square units.
a. Find a function that models the cylinder's height as a function of its radius.
b. Find a function that models the cylinder's radius as a function of its height.
8. Find a formula for the inverse function of $f(x)=\sqrt[3]{x+8}$ and plot the function and its inverse together in the same coordinate plane, showing the symmetry of these function across the line $y=x$.

Math 5 - Trigonometry - fall '07-Chapter 3 Test Solutions

1. Consider the line passing the points $(20,100)$ and $(7,9)$ in the $x-y$ Cartesian coordinate plane.
a. Show that an equation for the line in x and y.|

ANS: The slope is $m=\frac{100-9}{20-7}=\frac{91}{13}=7$. Plugging into the point-slope formula we have $y-9=7(x-7) \Leftrightarrow y=7 x-40$
b. Find an equation for the line parallel to this line and passing through (0,8). ANS: $y=7 x+8$
c. Find an equation for the line perpendicular to this line and passing through $(0,0)$.

ANS: $y=\frac{-1}{7} x$
2. Consider the quadratic $f(x)=-x^{2}+2 x+2$
a. Express the quadratic function in standard form.

ANS: $f(x)=-(x-1)^{2}+3$
b. Express the zeros (x-intercepts) of the parabola in simplest radical form.
ANS: $(x-1)^{2}=3 \Leftrightarrow x-1= \pm \sqrt{3} \Leftrightarrow x=1 \pm \sqrt{3}$
c. Sketch its graph, showing the coordinates of the vertex and all intercepts. ANS: (at right)
3. Consider the circle with diameter extending from $(0,0)$ to $(16,30)$.
a. Find the center of the circle.

ANS: The midpoint is $(8,15)$.
b. Find the radius of the circle. ANS: The radius is $\sqrt{8^{2}+15^{2}}=\sqrt{289}=17$
c. Write an equation for the circle. ANS: $(x-8)^{2}+(y-15)^{2}=289$
4. Suppose $f(x)=\sqrt{x+1}$ and $g(x)=\frac{1}{x^{2}-4}$. Find the domain of $(g \circ f)(x)$

ANS: $(g \circ f)(x)=g(\sqrt{x+1})=\frac{1}{\sqrt{x+1}^{2}-4}=\frac{1}{x-3}$ has domain $[-1,3) \cup(3, \infty)$.
5. Compute and simplify the average rate of change of $f(x)=\frac{x}{x^{2}+1}$ over the given interval.
a. $[0,2]$ ANS: $\frac{f(2)-f(0)}{2-0}=\frac{\frac{2}{2^{2}+1}-\frac{0}{0^{2}+1}}{2-0}=\frac{1}{5}$
b. $[1,1+h]$ ANS: $\frac{f(1+h)-f(1)}{1+h-1}=\frac{\frac{1+h}{(1+h)^{2}+1}-\frac{1}{1^{2}+1}}{h}=\frac{1+h}{h\left((1+h)^{2}+1\right)}-\frac{1}{2 h}=\frac{2+2 h-(1+h)^{2}-1}{2 h\left((1+h)^{2}+1\right)}$

$$
=\frac{2+2 h-1-2 h-h^{2}-1}{2 h\left((1+h)^{2}+1\right)}=\frac{-h^{2}}{2 h\left((1+h)^{2}+1\right)}=\frac{-h}{2\left((1+h)^{2}+1\right)}
$$

6. Given the graph of $y=f(x)$ shown at right and the given transformation, tabulate the transformed coordinate values of points at A, B, C, D, E, F and G, and plot the given transformation.

a. $y=2 f(x)$

	A	B	C	D	E	F	G
x	-3	-2	-1	0	1	2	3
y	1	2	5	10	5	2	1

b. $y=1+f(x-2)$

	A	B	C	D	E	F	G
x	-3	-2	-1	0	1	2	3
y	2	4	10	20	10	4	2

c. $y=10-f(x)$

7. The total surface area of a cylinder is π square units.
a. Find a function that models the cylinder's height as a function of its radius.

ANS: $2 \pi r^{2}+2 \pi r h=\pi \Leftrightarrow 2 r^{2}+2 h r=1 \Leftrightarrow 2 h r=1-2 r^{2} \Leftrightarrow h=f(r)=\frac{1-2 r^{2}}{2 r}$
b. Find a function that models the cylinder's radius as a function of its height.

$$
2 \pi r^{2}+2 \pi r h=\pi \Leftrightarrow 2 r^{2}+2 h r=1 \Leftrightarrow r^{2}+h r=\frac{1}{2} \Leftrightarrow r^{2}+h r+\frac{h^{2}}{4}=\frac{1}{2}+\frac{h^{2}}{4}
$$

ANS:

$$
\Leftrightarrow\left(r+\frac{h}{2}\right)^{2}=\frac{h^{2}+2}{4} \Leftrightarrow r+\frac{h^{2}}{2}= \pm \sqrt{\frac{h^{2}+2}{4}} \Leftarrow r=g(h)=\frac{h+\sqrt{h^{2}+2}}{2}
$$

8. Find a formula for the inverse function of $f(x)=\sqrt[3]{x+8}$. Plot the function and its inverse together in the same coordinate plane, showing the symmetry of these function across the line $y=x$. ANS: The inverse function is $f^{-1}(x)=x^{3}-8$. We can make a table of integer points for f :

x	-9	-8	-7	0
$f(x)$	-1	0	1	8

x	-1	0	1	8
$f^{-1}(x)$	-9	-8	-7	0

of the curves, we'd plot something like the following:

